EXAM ALGEBRAIC STRUCTURES,

June 21st, 2019, 9.00pm-12.00pm, MartiniPlaza, L. Springerlaan 2. Please provide complete arguments for each of your answers. The exam consists of 3 questions each subdivided into 4 parts. You can score up to 3 points for each part, and you obtain 4 points for free.

In this way you will score in total between 4 and 40 points.

(1) In this exercise we denote the ring $\mathbb{Z}[t]/(t^3)$ by R. Elements of R we write as $f(t) \mod (t^3)$, for some $f(t) \in \mathbb{Z}[t]$.

 $\mathfrak{L}(\mathbf{a})$ Show that $t+1 \mod (t^3)$ is a unit in R and find its inverse.

- $\mathfrak{S}(b)$ Does, apart from 1 mod (t^3) and 0 mod (t^3) , the ring R contain any idempotent (i.e., an element $\gamma \in R$ with $\gamma^2 = \gamma$)?
 - (c) Show that no unitary rings R_1 and R_2 exist in which $0 \neq 1$, such that $R \cong R_1 \times R_2$.
- z(d) For $a, b, c \in \mathbb{Z}$, show that $a + bt + ct^2 \mod(t^3)$ is a unit in R, if and only if $a = \pm 1$.

(2) Consider the ring $R = \mathbb{Q}[x, y]$.

- (a) Show that if $P \subset R$ is a prime ideal, then $P \cap \mathbb{Q}[x]$ is a principal ideal in $\mathbb{Q}[x]$ that is either generated by 0 or by an irreducible element of
- (b) Show that $\mathbb{Q}[x,y]\cdot(x-y^2)$ is a prime ideal in R. $\mathbb{Q}[x,y]\cdot(x-y^2)$ is a prime ideal in R.

- (d) Prove that the ideal in R generated by the two polynomials $x-y^2$ and $x^3 + y^3 + 1$ is a maximal ideal in R.
- (3) In this final exercise, R denotes the field $\mathbb{F}_2[t]/(t^4+t+1)$.

(a) Show that indeed R is a field.

- (b) Find the minimal polynomial of $t^2 + t \mod (t^4 + t + 1)$ over the prime field of R.
 - (c) Show that $f(t) \mod (t^4+t+1) \mapsto f(t+1) \mod (t^4+t+1)$ is a well-defined automorphism of the field R.
 - (d) What are the possible orders of elements in the group of units R^{\times} ?